EMBODIED ENERGY IN BUILDING MATERIALS AND TECHNOLOGIES FOR GREEN RESIDENTIAL BUILDINGS

United Nations - UNESCO Chai Educational, Scientific and Cultural Organization - Architecture National High School of Architecture of Grenoble

D Chair National of Archite

ENVIRONMENTAL IMPACT OF THE BUILDING INDUSTRY

- Cities take about 2 % of the land surface but consume 75 % of the world's natural resources.
- The construction sector is responsible for :
- 40% of the consumed resources
- 40% of CO_2 emissions
- 40% of waste (construction and demolition) (UNCHS/ Habitat)
- Buildings account for 30 to 40% of total global energy usage (United Nations Environmental Programme)

ENVIRONMENTAL IMPACT OF THE CONCRETE INDUSTRY

- 1 ton Portland Cement = ~ 0.95 ton CO₂ emissions (ICE)

• 1 ton Concrete = ~ 0.107 ton CO₂ emissions (ICE)

Cement production accounts for 5% of global CO₂ emissions. (IPCC)

(Though it is argued by many experts that the Concrete industry is closer to 7 – 9% of global CO₂ emissions.)

CHANGING PARADIGMS

ARE "GREEN MATERIALS" REALLY "GREEN"?

HOW DO WE KNOW THAT "GREEN BUILDINGS" ARE REALLY "GREEN"?

□ Can "Green buildings" reduce consumed energy with these materials?

- □ The initial embodied energy in these materials is very high, with high-tech building systems.
- Designing sustainable buildings requires first an appropriate choice of the building materials.

EMBODIED ENERGY – TERMS & DEFINITIONS

Initial Embodied Energy in Buildings

- □ The non-renewable energy consumed in the acquisition of raw materials, their processing, manufacturing, transportation to site, and construction.
- □ As a rule of thumb, embodied energy is a reasonable indicator of the overall environmental impact of building materials, assemblies or systems.

Recurring Embodied Energy in Buildings

□ The non-renewable energy consumed to maintain, repair, restore, refurbish or replace materials, components or systems during the lifetime of the building.

Operating Energy

- □ The recurring energy consumed in buildings for heating, cooling, ventilation, lighting, equipment and appliances.
- Passive energy systems rely on the building envelope to take advantage of natural energy sources such as sunlight, wind, water, and the surrounding soil.
- □ Active energy systems represent mechanical, electrical and/or chemical processes.

Energy Pay Back Time (EPBT)

□ The time required for any energy producing system or device to produce as much energy as was required in its manufacture.

UNITS OF MEASUREMENT

BOUNDARY CONDITIONS

EMBODIED ENERGY (CARBON):

"The embodied energy (carbon) of a building material can be taken as the total primary energy consumed (carbon released) over its life cycle. This would normally include (at least) extraction, manufacturing and transportation. Ideally the boundaries would be set from the extraction of raw materials (inc fuels) until the end of the products lifetime (including energy from manufacturing, transport, energy to manufacture capital equipment, heating & lighting of factory, maintenance, disposal... etc.), known as 'Cradle-to-Grave'. It has become common practice to specify the embodied energy as 'Cradle-to-Gate', which includes all energy (in primary form) until the product leaves the factory gate. The final boundary condition is 'Cradle-to-Site', which includes all the energy consumed until the product has reached the point of use (i.e. building site)."

– ICE, University of Bath, 2008

- □ 'Cradle-to-Gate' : From Material extraction to Manufacturing gate.
- □ 'Cradle-to-Site' : From Material extraction to Building site.
- □ 'Cradle-to-Grave' : From Material extraction to End-of-life.

ICE takes as boundary condition only 'Cradle to Gate for general data (not regionally specific).

 \Rightarrow We prefer to take 'Cradle-to-Site' as it includes the transportation energy to the site.

EMISSION VARIATION ACCORDING TO FUEL SOURCE

FUEL COMBUSTION								
Items	Details	Country	KgCO ₂ and Energ	y Quantity / Unit				
Petrol	Inferior combustion power	France	2.898 KgCO ₂ / litre	32.20 MJ/litre				
Diesel	Inferior combustion power	France	3.222 KgCO ₂ / litre	35.80 MJ/litre				
LPG (Propane or Butane)	Inferior combustion power	France	2.277 KgCO ₂ / litre	25.30 MJ/litre				
Wood combustion	Casuarinas wood at 15 % mh	India	1.584 KgCO ₂ / Kg	15.00 MJ/Kg				
Human energy		India	0.904 KgCO ₂ /day	10.04 MJ/day				
Note for human energy: It is normally not counted as it generates livelihood.								
BI	ut if it has to be taken, it would be	food value:	~300 Kcal/h					

Conversion Carbon / $CO_2 \Rightarrow C = 0.27273 CO_2$

Carbon (C) = 12 Gr/molecule	Oxygen (0) = 16 gr/molecule	$CO_2 = 12 + (16 \times 2) = 44$ Gr/molecule

RESOURCE PLANNING: SCARCITY & OVER-QUARRYING

Unplanned quarrying

- Leads to environmental stress/ material shortage/ scarcity
- Which leads to rapid inflation of material costs
- And even more unsustainable quarrying patterns
- Which impacts livelihoods, affordability and accessibility

Demand

For efficient and economical use of local available resources to meet housing demand Strengthening local supply chains from quarry to factory to house

Unplanned quarrying contributes to land erosion, loss of soil fertility, garbage dumps, etc.

Country Fired Brick industry in Pondicherry, Tamil Nadu

No management of material and fuel resources (Data: AVEI from Puducherry area)

TRANSPORTATION OF MATERIALS

FUEL COMBUSTION								
Items	Details	Country	KgCO ₂ and Energy	Quantity / Unit				
Human energy		India	0.904 KgCO ₂ /day	10.04 MJ/day				
Note for human energy: It is normally not counted as it generates livelihood.								
But if it has to be taken, it would be food value: \sim 300 Kcal/h								

ENERGY EFFICIENCY OF CSEB

TRANSPORTATION OF MATERIALS							
Items	Details	Country	KgCO ₂	Energy	y Quantity / Unit		
Diesel consumption for truck on site (8 m ³ / 12Tons)	For moving materials on site \sim 500 m = 15 litres / day 8h	India	4.967	KgCO ₂ /hour	67.13	MJ/h	
Diesel consumption for truck on road (8 m ³ / 12Tons)	For road driving with 12 Tons = 3 Km / litre	India	0.883	KgCO ₂ /Km	11.93	MJ/Km	
Diesel consumption for excavator	JCB excavator = 6 Litres / hour	India	15.895	KgCO ₂ /hour	214.80	MJ/h	

LOCAL/ ON-SITE EXTRACTION & USE:

- \Rightarrow Reduces carbon footprint
- \Rightarrow Reduces transport costs
- \Rightarrow Increases accessibility for low income tenants
- \Rightarrow Invests in local economies and value chains
- ⇒ Produces employment & livelihoods

ENERGY EFFICIENCY OF CSEB

Emissions kg CO_2/m^3 for the manufacture of Building units

ENERGY EFFICIENCY OF CSEB vs COUNTRY FIRED BRICK

Embodied e	nergy per m ³ material	Carbon emission per m ³ of material			
➤ CSEB	$= 572 \text{ MJ per m}^3$	➤ CSEB	$= 51.5 \text{ Kg CO}_2 / \text{m}^3$		
➤ Wire cut bricks	= 2,247 MJ per m ³	➢ Wire cut bricks	$= 202 \text{ Kg CO}_2 / \text{m}^3$		
≻ CFB	= 6,122 MJ per m ³	≻ CFB	$= 643 \text{ Kg CO}_2 \text{ /m}^3$		

10.7 TIMES LESS EMBODIED ENERGY THAN COUNTRY FIRED BRICKS

12.5 TIMES LESS EMISSIONS THAN COUNTRY FIRED BRICKS

Wood combustion:

 \Rightarrow Burning 1 kg of wood emits 1.6 kg of CO₂

 \Rightarrow Burning 50 Tons of wood emits 79.2 tons of CO_2

DATA SOURCES: Inventory of Carbon & Energy (ICE)

INVENTORY OF CARBON & ENERGY (ICE)

Version 1.6a

Prof. Geoff Hammond & Craig Jones

Sustainable Energy Research Team (SERT) Department of Mechanical Engineering University of Bath, UK

This project was joint funded under the Carbon Vision Buildings program by:

Available from: www.bath.ac.uk/mech-eng/sert/embodied/

Peer Review Source: Hammond, G.P. and C.I. Jones, 2008, 'Embodied energy and carbon in construction materials', *Proc. Instn Civil. Engrs: Energy*, in press.

© University of Bath 2008

Materials	E	Embodi E - MJ/k	ed Energ a	EC	- kgCO2	/Ka	Comments E = Embodied Energy, EC = Embodied Carbon
poregate				- T			
General	5	0.1			0.006		
luminium	12			1			
General		165			8.24		13.8 MJ/kg Feedstock Energy (included). Assumes UK ratio of 25.5% extrusions, 55.7% Rolled & 18.7% castings Worldwide recycled content of 33%.
Virgin		218			11.48		20.7 MJ/kg Feedstock Energy (Included).
Recycled		28.8			1.69		14.3 M Uko Easteback Ensemy (Included), Westebulde
Cast Products	10000000	159	RUSICIE	accesses	8.28	20020022	recycled content of 33%.
Virgin		226			11.70		21.3 MJ/kg Feedstock Energy (Included).
Recycled		454			1.35		13.6 MJ/kg Feedstock Energy (Included). Worldwide
Extruded		164			8.16		recycled content of 33%.
Virgin Recycled		34.1			1.98		20.2 MJ/kg Feedstock Energy (Included).
Rolled		166		1	8 98		13.8 MJ/kg Feedstock Energy (Included). Worldwide
Mente		247			11.50		recycled content of 33%.
Recycled		27.8		t	1.67		A COMMONY (EEEBOCK ENERGY (INCIDED)).
sephatt	5				1.110.2		
General		2.60			0.046		1.91 MJ/kg Feedstock Energy (Included)
Road & Pavement	-7-514	2.41			0.14		0.82 MJ/kg Feedstock Energy (Included), reference 123
EXAMPLE: Road	2,	872 MJ/84	m	134	KgCO2/S	gm	906 MJ/Sgm Feedstock Energy (included)
<u>Bitumen</u> General		47		1	0.48		 37.7 (?) MJ/kg Feedstock Energy (included). Feedstock taken as typical energy content of Bitumen, uncertain carbon doxide emissions
iracs	1		6				
General		44.00			2.42 (?)		poor data availability, largely dependent upon ore grade. Very poor carbon data, uncertain of estimates, which were taken from average quoted emissions per MJ energy
Virgin		80.00		t	4.39 (?)		
Recycled		20.00			1.1 (?)		
rioks	12	0100000	6	<u>.</u>	- matchet		
EXAMPLE: Single Brick	8.4	S.00	rink	0.82	0.22 00C02 per	brick	Assuming 2.8 kg per brick
Faoing Bricks		8.20		1	0.62		Very small sample size
EXAMPLE: Single Faoing Brick	23	MJ per b	lok	1.46	CO2 per	brick	Assuming 2.8 kg per brick
Limestone	-	0.85			9		
General		77.00		1	4.1 (?)		Reference 155
aroet	12	140-11-55					
General Carpet		74.40		l	3.89		For per square meter see material profile
Felt (Hair and Jute) Underlay		18.60			0.96		Reference 77 Very difficult to select value, few sources, large range
Nylon	an and the	87.9 to 14	9	and the second	8.66 to 7.3	1	value includes feedstock's
Polyethylterepthalate (PET)		108.50		l	6.65		Includes feedstock's
Polypropylene	1.51.5293355	85.40		00.204/5.02	6.03		profile
Polyurethane		72.10		1	3.78		Includes feedstock's
Rubber		87.6 to 14	0		3.81 to 8.1	1	
with Apphalt or farl	10000004	\$1.70		00-00-00	1.70		Reference 77
Wool		108.00		1	5 48	_	For per square meter see material profile, References
		198.90					57,166 & 234
CITIC III	1		-	I			
General (Typical)		4.8			0.83		Portand Cethent, CEM I
Horfar (1:3 cement cand mix)		10.90		+	0,213		
Mortar (1:4)		1.21		t	0.177		1
Mortar (1:8)		0.98			0.138		
Mortar (1:%:4% Cement:Lime:Sand	0.07229-020	1.37		0.5257.0057.5	0.198		Values estimated from the ICE Cement, Mortar & Concret
Mortar (1:1:8 Cement:Lime:Sand mix)		1.18		0.163			Model
Mortar (1:2:8 Cement:Lime:Sand mix)		1.09		I	0.143		
Soll-Cement		0.85		0.14			
% Cementitious Replacement	0%	25%	60%	0%	25%	60%	Note 0% Is a 'standard' CEM I coment
	10000	1135000	1000000	03255	115209	823	CHORE DAMAGE
General (with Fly Ash Replacement)	4.8	3.52	2.43	0.83	0.62	0.42	Portland Cement
General (with Fly Ach Replacement) General (with Blact Furnage Slag	4.8	3.52	2.43	0.83	0.62	0.42	Portland Cement

Units are KgCO₂/Kg and MJ/Kg

DATA SOURCES: Inventory of Carbon & Energy (ICE)

DATA SOURCES: Embodied Energy Compilation (AVEI)

Email: earthinstitute@auroville.org.in

Web: http://www.earth-auroville.com

2 – PROCESSED MATERIALS

The energy of transportation for cement, steel, sand and aggregates which are integrated in the calculations are based on the distances of the suppliers around Auroville, as indicated in the footnotes of the tables.

	BUILDING UNIT	'S 📂			
Items	Details	Count y	KgCO ₂ /m ³	Energy Qua	antity / Unit
Kiln Fired Brick (Indian average) 10	22 x 10 x 7cm, Delivered 150 Km	India	202.255	3.457 MJ/unit	2,247.28 MJ/m3
Country Fired Brick (Indian average) 10	22 x 10 x 7cm, Delivered 50 Km	India	441.123	7.074 MJ/unit	4,501.25 MJ/m3
Country Fired Brick (Puducherry area) 5	23 x 10 x 7cm, Delivered at 50 Km	India	642.866	9.857 MJ/unit	6,122.54 MJ/m3
Modular Brick ²	(20 × 10 × 10 cm)	India	202.520	4.500 MJ/unit	2,250.00 MJ/m3
Clay Fly Ash Brick 2	(20 × 10 × 10 cm)	India	104.410	2.320 MJ/unit	1,160.00 MJ/m3
Burnt Roofing Tiles 2		India		5.100 MJ/unit	
Sand Lime Brick ²	(20 × 10 × 10 cm)	India	125.562	2.790 MJ/unit	1,395.00 MJ/m3
Aerated Block 2	(40 × 20 × 20 cm)	India	64.716	11.500 MJ/unit	719.00 MJ/m ³
Fal-G Block 2	(30 × 20 × 15 cm)	India	79.027	7.900 MJ/unit	878.00 MJ/m3
Hollow Concrete Block 1	7 % cement (40 x 20 x 20 cm)	India	69.307	12.300 MJ/unit	770.00 MJ/m ³
Hollow Concrete Block 1	10 % cement (40 x 20 x 20 cm)	India	84.338	15.000 MJ/unit	937.00 MJ/m3
Solid Concrete Block 1	(30 × 20 × 15 cm)	India	104.050	10.400 MJ/unit	1,156.00 MJ/m3
4% CSEB, Production on site 5	Earth by hand with 4% cement (24 x 24 x 9 cm)	India	41.874	2.412 MJ/unit	465.26 MJ/m3
5% CSEB, Production on site 5	Earth by hand with 5% cement (24 x 24 x 9 cm)	India	49.366	2.844 MJ/unit	548.52 MJ/m ³
5% CSEB, Production on site/machine 5	Earth by machine with 5% cement (24 x 24 x 9 cm)	India	51.531	2.968 MJ/unit	572.58 MJ/m ³
6% CSEB, Production on site 5	Earth by hand with 6% cement (24 x 24 x 9 cm)	India	58.134	3.349 MJ/unit	645.94 MJ/m ³
8% CSEB, Production on site 5	Earth by hand with 8% cement (24 x 24 x 9 cm)	India	79.837	4.599 MJ/unit	887.09 MJ/m ³
Bitumen Stabilised Earth Block 2		India		0.790 MJ/Kg	
Steam Cured Earth Block 1	10 % lime (23 x 19 x10 cm)	India	137.983	6.700 MJ/unit	1,533.00 MJ/m3
Sand-lime brick 2		India		0.8 -1.2 MJ/Kg	
Adobe ²	(22 x 10 x 7 cm)	India	3.472	0.200 MJ/unit	129.87 MJ/m3

- Energy values for CSEB integrate the energy for transporting materials: 150 Km for cement and 20 Km for sand.

MORTARS AND CONCRETE – 1								
Items	Details	Country	KgCO ₂ /Kg	Energy C	Juantity / Unit	t		
Lime Pozzolana (LP) 1		India	0.228	2.330 MJ/Kg				
Cement Pozzolana Sand Mortar 1	(0.8: 0.2: 6)	India		1	918.00	MJ/m ³		
Cement Pozzolana Sand Mortar 1	(0.8: 0.2: 8)	India			736.00	MJ/m ³		
Concrete, Fibre reinforced 4		UK	0.450	7.750 MJ/Kg				
Gypsum Plaster 2		India	0.098-0.392	1-4 MJ/Kg				
Lime Pozzolana Sand Mortar 1	(0.33: 0.66: 3)	India		1	732.00	MJ/m ³		
Lightweight aerated concrete 2		India			1,000-2,000	MJ/m ³		
Sintered fly ash 2	Light weight aggregate concrete	India	0.098	1.000 MJ/Kg	1400.00	MJ/m ³		

Functional units: KgCO₂/m³, MJ/m³

3

DATA SOURCES: Embodied Energy Calculation (AVEI)

DATA AND SUMMARY - 1

Values in the sheet "Data & Summary" with reference ⁵ were calculated by the Auroville Earth Institute from data of raw materials collected from various realiable sources. The details of these calculations are showed in the other sheets.

STONES AND AGGREGATES							
Items	Details	Country	KgCO ₂ /m ³	Energy Qu	uantity / Unit		
River sand ⁵	(ρ = 1,450 Kg/m ³) ^{AVEI}	India	2.899	0.0204 MJ/Kg	29.58 MJ/m ³		
Aggregate 1 & 6	(granite stone $ ho$ = 2,690 Kg/m ³) ¹³	India	57.996	0.2200 MJ/Kg	591.80 MJ/m ³		
Crushed stone, gravel / chipping 4	(granite stone ρ = 2,600 Kg/m ³) ^{AVEI}	UK	41.600	0.3000 MJ/Kg	780.00 MJ/m ³		
Lime Stone ⁴	(ρ = 2,690 Kg/m ³) ¹³	UK	32.280	0.2400 MJ/Kg	645.60 MJ/m ³		
Marble 4	(ρ = 2,560 Kg/m ³) ¹³	UK	273.920	2.0000 MJ/Kg	5120.00 MJ/m ³		
Granite Stone 4	(ρ = 2,690 Kg/m ³) ¹³	UK	852.730	5.9000 MJ/Kg	15871.00 MJ/m ³		
Soil from site, extracted by hand 5	(ρ = 1,300 Kg/m ³) ^{AVEI}	India	1.033	0.0081 MJ/Kg	10.54 MJ/m ³		
Soil from site, extracted with machine 5	(ρ = 1,300 Kg/m ³) ^{AVEI}	India	2.142	0.0223 MJ/Kg	28.95 MJ/m ³		
Soil by truck, extracted with machine 5	(ρ = 1,300 Kg/m ³) ^{AVEI}	India	2.189	0.0228 MJ/Kg	29.58 MJ/m ³		
Note: River sand is considered with the same	e values as for the soil dug wih a machine a	nd transport	ed over 50 K	m.			

BINDERS							
Items	Details	Country	KgCO ₂ /Kg	Energy Qu	uantity / Unit		
Cement ⁴	Coal Fired Dry process, Bag 50Kg	India	0.830	4.60 MJ/Kg	230.00 MJ/bag		
Lime ⁴	(Bag 40 Kg)	India	0.740	5.63 MJ/Kg	225.20 MJ/bag		
Pozzolana ¹		India			15.00 MJ/m ³		

WOOD BASED MATERIALS							
Items	Details	Country	KgCO ₂ /Kg	Energy Qu	antity / Unit		
Timber (sawn) ²		India	0.490	2.50 MJ/Kg	1,380.00 MJ/m ³		
Timber, soft wood air dried (rough sawn) ⁶	(ρ = 550 Kg/m ³)	NZ	0.029	0.30 MJ/Kg	165.00 MJ/m ³		
Timber, soft wood air dried (dressed) 6	(ρ = 550 Kg/m ³)	NZ	0.114	1.16 MJ/Kg	638.00 MJ/m ³		
Timber, hard wood air dried (rough sawn) ⁶	(ρ = 850 Kg/m ³)	NZ	0.049	0.50 MJ/Kg	425.00 MJ/m ³		
Timber, hard wood air dried (dressed) ⁶	(ρ = 850 Kg/m ³)	NZ	0.176	1.80 MJ/Kg	1,530.00 MJ/m ³		
Plywood 7		Canada	1.019	10.40 MJ/Kg	5,720.00 MJ/m ³		
Particle board 7		Canada	0.784	8.00 MJ/Kg	4,400.00 MJ/m ³		

METALS							
Items	Details	Country	KgCO ₂ /Kg	Energy Qu	uantity / Unit		
Aluminium ²	2,600 Kg/m ³	India	25.480	260.00 MJ/Kg	676,000 MJ/m ³		
Copper ²	8,930 Kg/m ³	India	10.976	112.00 MJ/Kg	1,000,160 MJ/m ³		
Galvanized Steel (Sheet or Wire) 1	7,860 Kg/m ³	India	4.978	50.80 MJ/Kg	399,288 MJ/m ³		
Steel 12	7,860 Kg/m ³	India	3.000	33.33 MJ/Kg	262,000 MJ/m ³		
Steel Wire 4	7,860 Kg/m ³	UK	4.195	46.61 MJ/Kg	282,960 MJ/m ³		
GI Chicken Mesh 5 (3' wide, 1/2", 22 gauge)	0.355 Kg/m ² = 0.323 Kg/m	India	5.390	59.89 MJ/Kg	19.34 MJ/m		
GI Chicken Mesh 5 (4' wide, 1/2", 22 gauge)	0.475 Kg/m ² = 0.430 Kg/m	India	5.390	59.89 MJ/Kg	25.75 MJ/m		

BUILDING UNITS					
Items	Details	Country	KgCO ₂ /m ³	Energy Qu	uantity / Unit
Kiln Fired Brick (Indian average) ¹⁰	22 x 10 x 7 cm - Delivered at 150 Km	India	202.255	3.457 MJ/unit	2,247.28 MJ/m ³
Country Fired Brick (Indian average) 10	22 x 10 x 7 cm - Delivered at 50 Km	India	441.123	10.006 MJ/unit	4,501.25 MJ/m ³
Country Fired Brick (Puducherry area) 5	23 x 10 x 7 cm - Delivered at 50 Km	India	642.866	9.857 MJ/unit	6,122.54 MJ/m ³
4% CSEB, Production on site ⁵	Earth by hand 4% cement (24x24x9cm)	India	41.874	2.412 MJ/unit	465.26 MJ/m ³
5% CSEB, Production on site 5	Earth by hand 5% cement (24x24x9cm)	India	49.366	2.844 MJ/unit	548.52 MJ/m ³
5% CSEB, Production on site / machine 5	Earth machine 5% cement (24x24x9cm)	India	51.531	2.968 MJ/unit	572.58 MJ/m ³
6% CSEB, Production on site 5	Earth by hand 6% cement (24x24x9cm)	India	58.134	3.349 MJ/unit	645.94 MJ/m ³
8% CSEB, Production on site 5	Earth by hand 8% cement (24x24x9cm)	India	79.837	4.599 MJ/unit	887.09 MJ/m ³
Adobe ²	(22 x 10 x 7 cm)	India	3.472	0.200 MJ/unit	129.87 MJ/m ³
Notes: - CSEB = Compressed Stabilised Earth Block					
 Energy values for CSEB integrate the 	energy for transporting materials: 150 Km fe	or cement a	ind 20 Km fo	r sand.	

1

EMBODIE) ENERGY	IN COUNTRY	FIRED	BRICKS	- LOCAL	CLAN	IP (PUI	DUCHE	RRY)	
DATA		COUNTRY	Y FIRED F	BRICK = (CFB					
Brick size (L, W, H) (in cm	1)	23.0	23.0 10.0 7.0							
Brick weight (average dry)		3.00	Kg =	1,863	Kg/ m ³					
Item	Energy	De	tail		MJ/unit					
	MJ/unit									
Soil dug by machine (m ³)	28.95	0.0021 m ³			0.061					
Casurina burnt /CFB (Kg)	15.00	0.5 Kg / Brick	(9.178					
Transport (MJ/Km)	11.93	50.0 Km			0.149					
	SUB TOTAL				9.39					
Miscellaneous	5.0%				0.47					
TOTAL ENER	GY MJ/piece				9.86					
TOTAL EMISSION	S KgCO₂/m³				642.87					
TOTAL ENERGY MJ/M ³					6,122.5					
Notes: - 25 Tons of wood to burr	nt 50,000 cour	ntry fired bricks \Rightarrow	0.5 Kg of	wood per	country fired	brick				
- 1 Truck transports 4.00	0 bricks									

EMISSIONS OF COUNTRY FIRED BRICKS AND KILN FIRED BRICKS - (NATIONAL AVERAGES) ¹⁰							
	SPECIFIC ENERGY CONSUMPTION		PRODUCTIO	PRODUCTION CAPACITIES		NUMBER OF BRICKS	% PRODUCED
	MJ/	Kg-Brick	Lakh Kg-	Lakh Kg-bricks/year No.		Crore	Anuual
	Range	Average	Range	Average		Bricks / year	Production
BTK-fixed chimney	1.0 – 1.5	1.25	83 -275	179	25000	16,155	83.82
High draft/ zig zag	0.8 – 1.0	0.9	83 -138	110	200	79	0.41
Clamps	2.0 - 3.0	2.5	1.4 – 27.5	14	60,000	3,032	15.73
Vertical Shaft Brick Kiln	0.8 – 1.0	0.9	14 -110	62	30	7	0.03
			Notes				
Average weight of a brick: size 2	2 x 10 x 7 cm	(LxWxH)			= 2.770	Kg/Brick	
Average energy consumption for kiln fired brick (BTK, High draft/ zig zag, Vertical Shaft)			l Shaft)	= 3.457	MJ/Brick		
Average emissions for kiln fired brick (BTK, High draft/ zig zag, Vertical Shaft)				= 0.339	KgCO ₂ / Brick		
Average energy consumption for country fired brick (Clamp kiln)				= 6.925	MJ/Brick		
Average emissions for country fir	ed brick (Clan	np kiln)			= 0.679	KgCO ₂ /Brick	

FIRED BRICKS

DATA SOURCES: Embodied Energy Compilation (AVEI)

- Embodied energy of common and alternative building materials and technologies BV Venkatarama Reddy, KS Jagadish Department of Civil Engineering, Indian Institute of Science, Bangalore, India, 2001.
- 2 Comparative analysis of embodied energy rates for walling elements in India PS Chani, Najamuddin, SK Kaushik, 2003.
- **3** 50 years *Energy in Building Materials* Building Materials in India.
- 4 Inventory of Carbon & Energy (ICE) Prof. Geoff Hammond, Craig Jones Bath University, 2006.
- **5** *Embodied energy of various materials and technologies, Calculations* Satprem Maïni, Varun Thautam, Auroville Earth Institute, 2009/2013.
- **6** *The Energy embodied in Building Materials Updated New Zealand coefficients and their significance* Georges Baird, Andrew Alcorn Phil Haslami – 1997.
- 7 Recurring Embodied Energy: http://www.canadianarchitect.com/asf/perspectives_sustainibility/measures_of_sustainablity_measures_of_sustainablity_embodied.htm
- 8 Emissions produced as an average: http://www.cmit.csiro.au/brochures/tech/embodied/
- 9 Energy in Building Materials: Final Report Development Alternatives & BMTPC, New Delhi 1995.
- **10** *IPCC Certified Methodology* VSBK Brick Plants India, the PDD.
- **11** India's Cement Industry: Productivity, Energy Efficiency and Carbon Emissions Katja Schumacher and Jayant Sathaye.
- **12** Climate change & steel sector: IPCCC WG III's Dissemination workshop on Fourth Assesment Report -Shashi Bhushan Prasad.
- 13 Density of materials: http://www.simetric.co.uk/si_materials.htm
- **AVEI** Density of materials measured by the Auroville Earth Institute

EXAMPLE OF EMBODIED ENERGY CALCULATION REALIZATION APARTMENTS BUILT BY THE AUROVILLE EARTH INSTITUTE

17 apartments built in 3 building blocks

- Initial embodied energy for Realization is
 ~4 times less than a conventional building (RCC frame, RCC slab, infill with fired bricks)
- $\hfill\square$ Low emission for construction and use

- CSEB and stabilised earth from foundations to roof
- Wind energy
- Rainwater harvesting
- Wastewater biological system
- Earth tunnel for natural air conditioning

COMPARISON OF MATERIALS AND TECHNIQUES CSEB MASONRY WALLS

ENVIRONMENTAL IMPACT OF MATERIALS:

Material:	CO ₂ Emission: (kgCO ₂ /m ³)	Embodied Energy: (mJ/m³)
 Earth Block (5%) Earth Mortar 1:4:8 (7.5%) 	51.531 * 61.813 *	572.58 * 686.81 *

CSEB MASONRY WALL (24cm):

 Cost/ m² Material Cost (16 Rs./block) Labor Cost 	1,666 Rs. 25.7% 74.3%	
 Carbon Cost/ m² Embodied Energy/ m² 	13.630 kgCO ₂ * 151.44 mJ *	

COMPARISON OF MATERIALS AND TECHNIQUES CONVENTIONAL COUNTRY FIRED BRICK WALLS

*

ENVIRONMENTAL IMPACT OF MATERIALS:

Material:	CO ₂ Emission: (kgCO ₂ /m³)	Embodied Energy: (mJ/m ³)
Country Fired brickCement mortar 1:4	642.866 * 178.525 *	6,122.54 * 1,983.61 *

COUNTRY FIRED BRICK WALL (23cm):

 Cost/ m² Material Cost (4.25 Rs./brick) 	1,112 Rs. 80.8%	
 Carbon Cost/ m² 	19.2% 120.807 kgCO ₂ *	
Embodied Energy/ m ²	1,342.3 mJ * ²	

Carbon emissions: 8.8 times greater than CSEB blocks

Cost: 37 % less than CSEB blocks

Embodied Energy Data Compilation, Auroville Earth Institute, 2013

COMPARISON OF MATERIALS AND TECHNIQUES CONVENTIONAL REINFORCED CONCRETE WALLS

ENVIRONMENTAL IMPACT OF MATERIALS:

Material:	CO ₂ Emission: (kgCO ₂ /m ³)	Embodied Energy: (mJ/m ³)
M20 Concrete (1:1.5:3)Steel reinforcing	213.062 * 3.000 (kgCO ₂ /kg) *	2,367.35 * 262,000 *

RCC WALL (20cm):

 Cost/ m² Material Cost Labor Cost 	2,810 Rs. 80.6 % 19.4 %	
 Carbon Cost/ m² Embodied Energy/ m² 	108.4 kgC0 ₂ * 1,204.2 mJ *	

Carbon emissions: 7.9 times greater than CSEB blocks

Cost: 102 % greater than CSEB blocks

* Embodied Energy Data Compilation, Auroville Earth Institute, 2013

COMPARISON OF MATERIALS AND TECHNIQUES CSEB VAULTING

Material:	CO ₂ Emission: (kgCO ₂ /m ³)	Embodied Energy: (mJ/m ³)
Earth Block (5%)Earth Mortar 1:4:8 (7.5%)	51.531 * 61.813 *	572.58 * 686.81 *

CSEB MASONRY VAULT (11.5 thick shell, projected area):

•	Cost/ m ² Material Cost Labor Cost	2,755 Rs. 39.0 % 61.0 %	
•	Carbon Cost/ m ² Embodied Energy/ m ²	11.627 kgCO ₂ * 129.19 mJ *	

COMPARISON OF MATERIALS AND TECHNIQUES FERROCEMENT CHANNELS

ENVIRONMENTAL IMPACT OF MATERIALS:

Material:	CO ₂ Emission: (kgCO ₂ /m ³)	Embodied Energy: (mJ/m ³)
 Concrete (1:2:4) Mortar (1:3) Steel reinforcing Chicken mesh Sand filling 	185.698 * 239.112 * 3.000 (kgCO ₂ /kg) * 5.390 (kgCO ₂ /kg) * 2.899 *	2,063.31 * 2,656.80 * 262,000 * 59.89 (kgCO ₂ /kg) * 29.58 *

FC CHANNEL FLOOR/ ROOF (projected area):

 Cost/ m²	2,468 Rs.
Material Cost	46.8 %
Labor Cost	53.2 %
 Carbon Cost/ m² Embodied Energy/ m² 	47.400 kgCO ₂ * 526.67 MJ *

Carbon emissions: 4.4 times greater than CSEB vaults

Cost: 12 % less than CSEB vaults

COMPARISON OF MATERIALS AND TECHNIQUES CONVENTIONAL RCC SLAB

*

ENVIRONMENTAL IMPACT OF MATERIALS:

Material:	CO ₂ Emission: (kgCO ₂ /m ³)	Embodied Energy: (mJ/m ³)
M20 Concrete (1:1.5:3)Steel reinforcing	213.062 * 3.000 (kgCO ₂ /kg) *	2,367.35 * 262,000 *

RCC FLOOR SLAB (15cm thick, projected area):

•	Cost/ m ² Material Cost	2,194 Rs. 75.7 %	
•	Carbon Cost/ m ² Embodied Energy / m ²	66.333 kgCO ₂ * 737.03 mJ *	

Carbon emissions: 5.7 times greater than CSEB vaults

Cost: 7 % greater than CSEB vaults

Embodied Energy Data Compilation, Auroville Earth Institute, 2013

REFERENCES

- Embodied energy of common and alternative building materials and technologies BV Venkatarama Reddy, KS Jagadish Department of Civil Engineering, Indian Institute of Science, Bangalore, India, 2001.
- 2 Comparative analysis of embodied energy rates for walling elements in India PS Chani, Najamuddin, SK Kaushik, 2003.
- **3** 50 years *Energy in Building Materials* Building Materials in India.
- 4 Inventory of Carbon & Energy (ICE) Prof. Geoff Hammond, Craig Jones Bath University, 2006.
- 5 Embodied energy of various materials and technologies, Calculations Satprem Maïni, Varun Thautam, AVEI, 2009/2013.
- **6** *The Energy embodied in Building Materials Updated New Zealand coefficients and their significance* Georges Baird, Andrew Alcorn Phil Haslami 1997.
- 7 Recurring Embodied Energy:

http://www.canadianarchitect.com/asf/perspectives_sustainibility/measures_of_sustainablity/measures_of_sustainablity_embodied.htm

- 8 Emissions produced as an average: http://www.cmit.csiro.au/brochures/tech/embodied/
- 9 Energy in Building Materials: Final Report Development Alternatives & BMTPC, New Delhi 1995.
- **10** *IPCC Certified Methodology* VSBK Brick Plants India, the PDD.
- 11 Intergovernmental Panel on Climate Change (IPCC) 2007 Climate change 2007, Working group III, Migitation of climate change
- 12 India's Cement Industry: Productivity, Energy Efficiency and Carbon Emissions Katja Schumacher and Jayant Sathaye.
- **13** Climate change & steel sector: IPCCC WG III's Dissemination workshop on Fourth Assesment Report -Shashi Bhushan Prasad.
- 14 Density of materials: http://www.simetric.co.uk/si_materials.htm
- 15 Net Energy Gain: http://en.wikipedia.org/wiki/Energy_payback_time
- 16 Energy Pay Back Time: http://www.ecotopia.com/apollo2/pvepbtne.htm
- 17 Life Cycle Assessment: http://en.wikipedia.org/wiki/Life_cycle_analysis
- 18 Energy Returned on Energy Invested: http://en.wikipedia.org/wiki/EROEI
- **19** Mattoo, et al, Can Global De-Carbonization Inhibit Developing-Country Industrialization? 2009.

Thank you for your kind attention!

Lara Davis, architect Satprem Maïni, architect

AUROVILLE EARTH INSTITUTE UNESCO Chair "Earthen Architecture" BASIN South Asia

Auroshilpam, 605 101 Auroville, TN India

Tel.: +91 (0) 413 - 262 3064 / 262 3330 Email: earthinstitute@auroville.org.in Fax: +91 (0) 413 - 262 2886 www.earth-auroville.com